Disclaimer
• Your life and health are your own responsibility.
• Your decisions to act (or not act) based on information or advice anyone provides you—including me—are your own responsibility.

Categories

We Win! TIME Magazine Officially Recants (“Eat Butter…Don’t Blame Fat”), And Quotes Me

It’s been 30 years and three months since TIME Magazine’s infamous “Cholesterol…And Now The Bad News” cover featured the bacon-and-eggs frowny face—the arresting image which firmly institutionalized fat and cholesterol-phobia in America:

Cholesterol: And Now The Bad News...

The face that launched a million failed diets.

Meanwhile, my parents recently visited something even rarer than a paleo-friendly doctor—they visited a doctor whose office features current magazines in the waiting room. In it, they spotted the June 23, 2014 issue of TIME magazine, featuring the following cover story:

Click to read the cover story (requires TIME online subscription)

Link to cover story (requires TIME online subscription)

Yes, the cover reads:

Eat Butter.
Scientists labeled fat the enemy. Why they were wrong


and the first page of the article is titled
Don’t Blame Fat

The contents of the article won’t be a surprise to anyone in the Paleo community, the low-carb community, the WAPF, or anyone who has taken the time to evaluate the science and statistics on their own: thirty years of low-fat dogma has produced a nation fatter and sicker than ever, and the “science” supporting the dogma wasn’t science at all. What I find interesting are the implications and consequences of the article, so please permit me to discuss a few of them.

This Is The Tipping Point

The message on the cover could not be more stark: “Eat Butter.”

Given that opening salvo, we can expect to see Drs. Westman, Lustig, Phinney and Volek make an appearance…but the article also quotes Drs. David Ludwig, Rajiv Chowdhury, and Dariush Mozaffarian, all lead authors of recent, high-impact research papers questioning different aspects of low-fat dogma. (Several of which I’ve read and previously cited.)

And, despite the predictable grousing from vegans like Dean Ornish (who, predictably, moves the goalposts away from health issues and blames meat-eaters for environmental destruction), it’s clear that the current crop of public policy heavyweights can see that the anti-fat ship has long since crashed into a massive iceberg of scientific evidence, and are scrambling for the lifeboats

—the most comical example of such being Walter Willett, who claims “he was sitting on a piece of contrary evidence that none of the leading American science journals would publish.” Dude, you’ve been the chairman of the Department of Nutrition at the Harvard School of Public Health since 1991, at which time you already had your name on over 140 published papers. If you were sitting on data that exonerated saturated fat, it’s because you prioritized advancing your own career over public health.

Again, nothing in this article will be news to any of my readers! What I find interesting is that the mainstream academic establishment, and with it, the mainstream mass media, is finally abandoning low-fat dogma. This is a clear tipping point in the dietary debate.

Don’t Expect Public Policy To Change

Unfortunately, we can expect the US government to be the last to change, for two reasons: governments have zero accountability, and massive agricultural subsidies produce a massive surplus of grains that need to be disposed of somehow. This means several problems will continue to bedevil us:

  • Obesity research, which is mostly NIH-funded, will therefore continue to be mostly useless.
  • The government-issued low-fat dietary recommendations will continue shambling well into the 21st century, like a glassy-eyed horde of zombies. (“GRAAAAAAAAAAAINS!”)
  • Consequently, school lunches will continue to be crypto-vegetarian, protein-deficient piles of birdseed (also known as “hearthealthywholegrains”) and limp steamed vegetables. As I said years ago, long before the new school lunch regulations, “Expect school lunches to become even more disgusting and empty of nutrition. If you want your child to grow up healthy, expect to help them pack a lunch every day. Expect to be grilled by suspicious administrators who think you’re damaging your child by feeding them real food.”
  • Unhealthy packaged foods, made from heavily subsidized corn, soy, and wheat, will remain artifically cheap—while real food like fruit, vegetables, and grass-finished beef (which remains unsubsidized) will remain expensive by comparison. As a result, the health of Americans will continue to suffer.

Who Gets The Blame For Killing Millions Of People Over Three Decades?

Given the millions of dead and the incalculable suffering caused by what Philip Handler correctly called “a vast nutritional experiment”:

“What right has the federal government to propose that the American people conduct a vast nutritional experiment, with themselves as subjects, on the strength of so very little evidence that it will do them any good?”

-Dr. Philip Handler, then-President of the National Academy of Sciences, in Senate testimony to the U.S. Senate Select Committee on Nutrition and Human Needs in 1977. (Yes, the one that came up with the original low-fat, low-cholesterol Dietary Goals for the United States. Quote via Gary Taubes.)

One might ask “Will there be any accountability for what amounts to mass murder?

As we’ve seen above, the answer is “No”…and the current solution seems to be “We’ll blame it all on Ancel Keys, because he’s dead.” Yet with few exceptions, the academic and professional establishments fell in line rather than risk their own political standing by confronting dogma they suspected (or, in many cases, knew definitively) to be wrong.

Don’t Expect Any Credit

You’ll notice that no one gets quoted in TIME on public health matters without an MD or PhD and a long, mainstream academic or public policy career (the single exception being Nina Teicholz, whose book “The Big Fat Surprise” was just published by a major New York house.) So don’t hold your breath for people like Drs. Mary Enig, Malcolm Kendrick, Uffe Ravnskov, Michael Eades, or John Briffa (let alone John Yudkin or Wolfgang Lutz) to get any credit, even though they all have MDs and/or PhDs.

The article doesn’t even mention Gary Taubes, who single-handedly brought fat back into the public discourse with his 2001 article “What If It’s All Been A Big Fat Lie?” and his 2007 book “Good Calories, Bad Calories”…so I predict that hell will freeze over before any Paleo source gets any mainstream credit for our work. (I know NPR journalists who tried to get an article on Paleo pubished for years, and failed.) Besides, the press has spent too much time and effort mocking Paleo with “CAVEMAN DIET HURRR DURRRR” to back out now.

This tells you what you should already know: it’s nice to have the support because it makes your eating habits less socially awkward—but the mainstream press is a trailing indicator, not a leading indicator.

J. Stanton Quoted In TIME Magazine! (By Proxy)

I laughed when I saw this quote in the article, and so will many of my readers:

“A bagel is no different than a bag of Skittles to your body,” says Dr. Dariush Mozaffarian.

The analogy is straight out of one of my most popular articles (“Mechanisms of Sugar Addiction: Or, Why You’re Addicted To Bread”), published way back in 2010, and which still gets tens of thousands of page views every month:

At the risk of quoting myself, I'll quote myself.

At the risk of quoting myself, I’ll quote myself.

No, I’m not mad! I’ve cited Dr. Mozaffarian’s work before, I’m proud that he’s among my many readers—and it’s a remarkably sticky analogy that gets an important point across to TIME’s tens of millions of readers worldwide.

Most importantly, I understand the rules of the game: since I have no MD, PhD, or high-level public policy career, my research and information will only reach the mainstream media through an intermediary with such official standing.

PROTIP: Anyone can thank me by slipping me online access to journals via an academic or professional account. Your help will remain confidential.

The Mainstream Authorities Often Aren’t Very Smart

From the TIME article:

“When you replace saturated fats with polyunsaturated and monounsaturated fats, you lower LDL cholesterol,” says Dr. Robert Eckel, a past president of the AHA and a co-author of the group’s recent guidelines. “That’s all I need to know.”

Actually, if you’re tasked with recommending dietary guidelines to an entire nation, I’m sure you need to know much more than that—starting with the fact that TG/HDL is a much stronger predictor of heart disease than LDL. For example:

Circulation. 1997 Oct 21;96(8):2520-5.
Fasting triglycerides, high-density lipoprotein, and risk of myocardial infarction.
Gaziano JM, Hennekens CH, O’Donnell CJ, Breslow JL, Buring JE.
(fulltext)

“…The ratio of triglycerides to HDL was a strong predictor of myocardial infarction (RR in the highest compared with the lowest quartile=16.0; 95% CI=7.7 to 33.1; P for trend <.001).      [...] Adjustment for available coronary risk factors did not materially alter the results.      [...] Further adjustment for LDL did not materially alter the results.

No, that isn’t a typo! The highest 25% of TG/HDL ratio carries 16 TIMES GREATER RISK of a heart attack than the lowest 25%. And LDL wasn’t significant.

Clinics (Sao Paulo). 2008 Aug;63(4):427-32.
High ratio of triglycerides to HDL-cholesterol predicts extensive coronary disease.
da Luz PL1, Favarato D, Faria-Neto JR Jr, Lemos P, Chagas AC.
(fulltext)

“The odds ratios for the extent of coronary disease between the fourth and first quartiles were as follows: total cholesterol, 1.08, 95%CI (0.57–2.03), p = 0.87; LDL-c, 1.62, 95%CI (0.86–3.06), p = 0.15; triglycerides, 1.7, 95%CI (0.94–3.08), p = 0.986; HDL-c, 0.25, 95%CI (0.13–0.46), p = 0.0001; and TG/HDL-c, 3.31, 95%CI (1.78–6.14), p = 0.0002 (Figure 1).
     […]
The relationship was not significant between extent of coronary disease and total cholesterol [1.25 (0.82–1.91; p = 0.33)] or LDL-c [1.47 (0.96–2.25; p = 0.0842)].”

So the actual, measured extent of coronary disease is best predicted by TG/HDL—while neither TC or LDL (universally and erroneously known as “bad cholesterol”) is significantly predictive.

Bonus Question: What dietary modification most efficiently reduces triglycerides and increases HDL?

Answer: Replacing dietary carbohydrate with saturated fat. (Extra credit for MCTs.)

The evidence is clear: the paleo community is many years ahead of the “mainstream”, and degrees don’t magically make you smart. Meanwhile, expect to see a great deal of backing-and-filling from the AHA, the ADA, and other alphabet-soup organizations in the future.

It’s also very important to remember that the political skills required to ascend to the level of policy-making don’t usually correlate with the skills required to rationally evaluate existing evidence and determine the best course of action—and even if one is capable of it, that telling the truth is rarely compatible with advancing one’s political standing.

Bonus Section: From the “I’m Right” Files

Mol Metab. 2013 Aug 19;2(4):329-36. doi: 10.1016/j.molmet.2013.08.003.
The hormonal signature of energy deficit: Increasing the value of food reward.
Lockie SH1, Andrews ZB.
(fulltext)

“As outlined in Section 1, using the catch-all term of ‘reward’ to describe all mesolimbic processes has led to confusion in the literature.”

The attentive reader will note that I made this very point, and dissected this very subject at length, way back in 2011 (index to my article series “Why Are We Hungry?” here), and I summarized and extended my work at AHS 2012 (video, text). For example:

“It is also very important to note that what is colloquially called “reward” is a mashing together of hedonic impact and incentive salience. Both vary independently, and both are subjective properties—so the term “food reward”, which implies a singular property of the food itself, is intrinsically misleading…

““Palatability” and “reward” are not properties of food. Our likes and wants are subjective properties we assign to food based on our past experiences, and our current state of satiation and satiety.”

J. Stanton, AHS 2012

Moving on:

“Energy deficit serves to alter motivational state by increasing the incentive salience of certain reinforcers. […] This ultimately manifests as increased motivation to work for a reinforcer, and serves to alter the incentive salience of food in line with metabolic need. [Emphasis mine]” –Lockie 2013

Stated simply, hunger makes food more “rewarding.” I think I’ve said that before!

(Further reading: Hopkins 2014, Domingos 2013, my AHS2012 bibliography.)

Important note: I’m not accusing anyone of plagiarism or uncredited appropriation! I’m happy to see that my work is beginning to be confirmed by work done within the academic research community.

At the present rate, I predict you’ll start to see people other than myself, Petro at Hyperlipid, Mike T Nelson, and a few exercise physiologists discover the importance of metabolic flexibility somewhere around 2018. Remember: you heard it here first.

Conclusions

  • Paleo and its offshoots (Primal, Perfect Health Diet) are still years ahead of the academic research, and even farther ahead of mainstream dietary advice.
  • The political savvy required to become a Recognized Authority is frequently unaccompanied by the keenest analytical mind or a burning desire to seek truth…and telling the truth is often incompatible with political advancement.
  • The mainstream of academia, politics, and the press will continue to pretend they weren’t simply, devastatingly wrong for decades, causing the deaths of millions and incalculable suffering—and that it was all Ancel Keys’ fault.
  • Don’t count on receiving any credit for having been correct long before it was popular, or even acceptable. Accept that eating like a predator, and living like a predator, is its own reward.

Live in freedom, live in beauty.

JS


Yes, I’ll be writing more articles soon! Meanwhile, there’s much more to read in the index.

Also, I’ve updated and revamped the forum and commenting software. Hopefully comments should still work as they always have: please let me know (through the Contact link above) if you experience problems.

Why Snacking Makes You Weak, Not Just Fat

Caution: contains SCIENCE!

All of us want to stay as strong and fit as we can, with as little effort as we can…and the profusion of ridiculous exercise gadgets and workout books testifies to our desire to look like fitness models, while living and eating like Homer Simpson.

What we want...

...and what we get.


However, the government-recommended “food pyramid”—and its inevitable consequence, sugar (‘carbohydrate’) addiction—sabotages our efforts to be healthy and strong. Snacking doesn’t just make us fat…it makes us weak.

To explain why, we need to review some metabolic facts.

Insulin: The Storage Hormone

Our bodies strongly regulate ‘blood sugar’, which is just the amount of free glucose in our bloodstream. Under normal circumstances, this is about a teaspoon.

If we don’t have enough glucose in our blood, our cells start dying very quickly, starting with our brain. If we have too much, it slowly poisons the kidneys, eyes, heart, and circulatory system—and we experience all the complications of untreated diabetes, such as numbness, blindness, muscle wasting, gangrene, renal failure, and heart failure.

When we eat and digest food, its nutrients are absorbed into our blood, through our intestines. If that food contains glucose (‘starch’, ‘carbohydrate’, ‘sugar’)—or certain amino acids (‘protein’)—our pancreas secrete a hormone called insulin, which signals cells all over our bodies to take these nutrients out of our bloodstream and store them. This keeps our blood sugar from getting too high.

Since there’s a lot more than a teaspoon worth of glucose in most foods (look on the ingredient label: most of “Total Carbohydrate” is glucose), it’s obvious that both our pancreas’ production of insulin, and our cells’ response to insulin, has to be solid and well-regulated, or we will have major health problems—which we call diabetes.

(Diabetes is just long-term glucose poisoning. Type I diabetes is when your blood sugar stays high because your pancreas can’t make insulin. Type II diabetes is when your blood sugar stays high because your body stops responding to insulin.)

Here’s another important metabolic fact: unlike body fat, which is a dedicated organ for storing energy in the form of…fat, our body has no dedicated storage organ for protein. (Recall that “protein” is just chains of amino acids.) Our body’s tissues—primarily our muscles—do double duty here. Muscles move our bodies, and they provide a storage reserve for our body’s daily protein needs.

This is why long-term fasting, or protein deprivation, causes you to lose muscle: your body disassembles it for the amino acids it needs every day to maintain itself.

Insulin, Proteolysis, and Protein Synthesis: It’s Not Just About Blood Sugar

Insulin has many effects in the body, not all of which are completely understood. Click the image for a long discussion.

Now we are getting to the meat of the story.

There is an interesting fact about insulin: it doesn’t just cause our bodies to store fat, and it doesn’t just cause our bodies to try and build muscles and tissues. It also tends to inhibit proteolysis, which is the process by which our bodies break down our own tissues (again, primarily our skeletal muscles) for protein.

But it doesn’t always do this.

Am J Physiol. 1993 Nov;265(5 Pt 1):E715-21.
Acute hyperglycemia enhances proteolysis in normal man.
Flakoll PJ, Hill JO, Abumrad NN.

Skipping to the middle of the text:

“Previous studies from our laboratory have indicated that the effect of insulin on suppressing proteolysis is highly dependent on the availability of plasma amino acids. […] At maximal insulin levels…protein breakdown was suppressed by approximately 90% when amino acids were available compared with 45% when hypoaminoacidemia was allowed to develop. These studies were performed with glucose fixed at euglycemic levels.”

So we know that insulin + available protein = 90% reduction in proteolysis, while insulin + no available protein = 45% reduction in proteolysis. Now we return to the abstract:

“ABSTRACT: The influence of hyperinsulinemic-hyperglycemia on protein and carbohydrate homeostasis was assessed using L-[1-13C]-leucine and [3-3H]glucose combined with open-circuit indirect calorimetry. After a 30-min basal period, healthy human volunteers were subjected to two sequential experimental periods (150 min each) during which insulin was continuously infused at a rate to elicit maximal effects (10.0 mU.kg-1 x min-1, resulting in 220-fold basal levels) in conjunction with an infusion of L-amino acids to maintain euleucinemia. Plasma glucose was maintained near basal (94 +/- 2 mg/dl) during period I and at twofold basal (191 +/- 4 mg/dl) during period II. The endogenous rate of leucine appearance (index of proteolysis in mumol.kg-1 x h-1) dropped by 80% from basal during period I (P < 0.01) but only by 44% during period II. […] The present study demonstrates that, during hyperinsulinemia, acute elevations of plasma glucose to two times basal levels result in a marked stimulation of whole body proteolysis during hyperinsulinemia.”

And now we also know that normal blood sugar + maximal insulin = 80% reduction in proteolysis, whereas high blood sugar + maximal insulin = 44% reduction in proteolysis.

These are two very interesting sets of facts. Here’s the summary:

  • Insulin increases whole-body protein synthesis…but the protein has to come from somewhere.
  • If protein is available in the bloodsteam and your blood sugar is normal, insulin almost completely stops the process of breaking down your muscles for your protein needs. This makes sense: why break down muscle when protein is already available?
  • If protein is unavailable in the bloodstream, insulin only halfway stops this process. This also makes sense: if protein is unavailable from the food you ate, you still need to get it from somewhere.
  • If your blood sugar is high (twice normal), insulin stimulates whole body proteolysis.

And here’s the takeaway:

Every time you stimulate insulin production by eating carbohydrates, you need to eat some complete protein with it—or instead of rebuilding your muscles and tissues, your body will continue to disassemble itself to get that protein. And the higher your blood sugar spikes, the more your body will disassemble itself anyway.

Are you seeing the problem? When you eat, insulin signals your body to stop eating itself…but only if you’ve eaten protein, and only if your blood sugar isn’t spiking.

Every time you eat candy or drink a soda by itself, not only are you signaling your body to store fat…you’re disassembling your own muscle.

It’s even worse. That ‘healthy’ mid-afternoon apple or orange, to keep your blood sugar up? Same problem. And remember the food pyramid? Those “7-11 servings of heart-healthy whole grains” we’re all supposed to be eating every day? How are you going to stuff eleven servings into three meals?

You’re not: you’re going to snack.

That’s what we’re advised: never, ever let yourself get hungry. Keep your bloodstream filled with sugar and insulin at all times! So that’s what we do. Crackers, bagels, muffins, corn chips, rice cakes, cookies, danishes…all low-fat, of course.

And, even worse, low-protein. Being grain and sugar-based, snack foods contain little protein—and the protein they do contain is incomplete. (Corn and wheat are deficient in lysine, one of the essential amino acids.) If your body is short on any essential amino acid, it will still have to disassemble itself to get the one it needs, regardless of how much of all the others are available.

Every time you eat high-sugar, protein-deficient food—even whole fruit and “heart-healthy complex carbohydrates”—you’re making yourself fatter and weaker.

In support of this theory:

Ann Surg. 2005 Feb;241(2):334-42.
Influence of metformin on glucose intolerance and muscle catabolism following severe burn injury.
Gore DC, Wolf SE, Sanford A, Herndon DN, Wolfe RR.

Metformin administration was also associated with a significant increase in the fractional synthetic rate of muscle protein and improvement in net muscle protein balance. Glucose kinetics and muscle protein metabolism were not significantly altered in the patients receiving placebo.

CONCLUSIONS: Metformin attenuates hyperglycemia and increases muscle protein synthesis in severely burned patients, thereby indicating a metabolic link between hyperglycemia and muscle loss following severe injury.”

Why would giving a diabetes drug to burn victims cause them to heal more quickly? Because metformin stops the liver from making glucose—lowering blood sugar.

Conclusion: Snacking Makes You Fat, And Snacking Makes You Weak

This explains a lot, doesn’t it? Why so many joggers can pound out hundreds of miles and still squeeze up muffin tops? Why so many cyclists can spin for thousands of miles and still have to stuff a beer gut into their Lycra? Why even the skinny ones often look like famine victims—not like strong, healthy, capable humans? And why you never look like the people in the magazine ads, no matter how long you spend on the hamster wheels at the gym?

This helps explain why so many vegans (especially raw vegans) appear scrawny and malnourished. Fruit might have some nutrients in it, but it’s still essentially protein-less sugar.

It also helps explain why obesity with Type II diabetes is so difficult to recover from: high blood sugar keeps you from building muscle like a normal person. (There are many other positive feedback loops in obesity and diabetes…this is just one of them.)

Not only does that post-workout bran muffin contain more calories than you burned—it’s making you fat, and you’re still losing the muscle you’re trying to build.

It’s not the “food pyramid”—it’s the “fat pyramid.”

Stop eating birdseed (‘grains’) and diesel fuel (‘vegetable oil’).
Start eating real food.
Live in freedom, live in beauty.

JS


Postscript: How Do I Stop Snacking, And What Do I Eat Instead?

Answer: eat real food and you won’t need to snack. Here’s how I stay lean and strong with very little effort.

For more information, you can read my three-part series on carbohydrate addiction: Mechanisms of Sugar Addiction, “Adjacent To This Complete Breakfast!”, and The Myth Of Complex Carbohydrates.

Important note! Forwarding this article using the buttons below makes you 17% sexier.